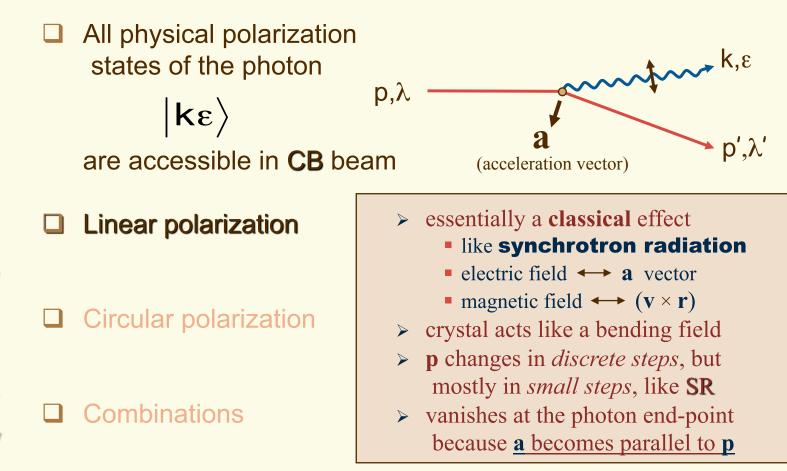
Workshop on QCD and the role of gluonic excitations, D.C., Feb. 10-12, 2005

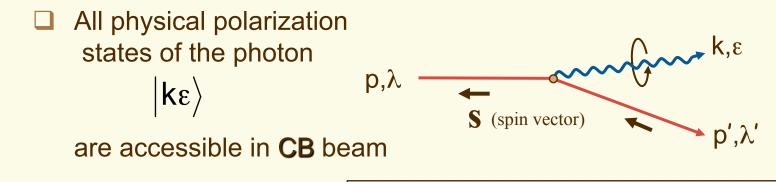
Exploiting Polarization in Peripheral Photoproduction: Strategies for GlueX

Richard Jones University of Connecticut, Storrs

Questions an experimenter might ask:

- What states of polarization are available in this beam?
- □ What general expressions can describe these states?
- How does polarization enter the cross section?
- Why is linear polarization of particular interest?
- What additional information is available with circular polarization?
- □ How (well) can we measure the polarization state?
- In what situations might target polarization be useful?
- □ Can we make a beam with helicity $|\lambda| \ge 2$?





Linear polarization

Circular polarization

Combinations

- essentially a quantum effect
- > photon helicity follows electron λ
 - holds <u>exactly</u> in the chiral limit
 - consider photon helicity basis ε_{\pm} $\overline{u}_{p'\lambda'}A_{\pm}u_{p\lambda} \sim p'_{\perp}(\chi_{\lambda'}, (1 \pm 2\lambda)\chi_{\lambda})$
- vanishes for colinear kinematics
- > 100% helicity transfer !
- > chiral limit \rightarrow photon end-point

4

□ All physical polarization states of the photon $|k\epsilon\rangle$ p, λ

are accessible in CB beam

Linear polarization

Circular polarization

Combinations

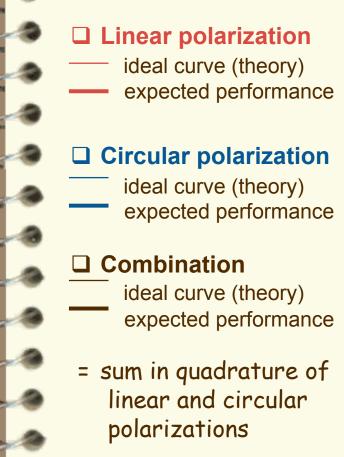
both kinds simultaneously possible

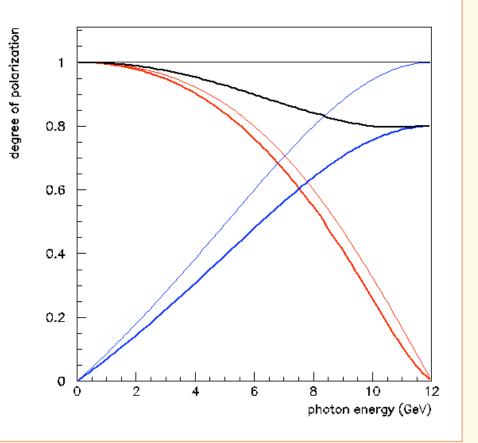
- > a sort of <u>duality</u> exists between them
 - linear: disappears at the end-point
 - circular: disappears as $k \rightarrow 0$
- limited by the sum rule

$$\mathbf{P}_{\mathrm{o}}^{2} + \mathbf{P}_{\perp}^{2} \le 1$$

 requires CB radiator and longitudinally polarized electrons

5

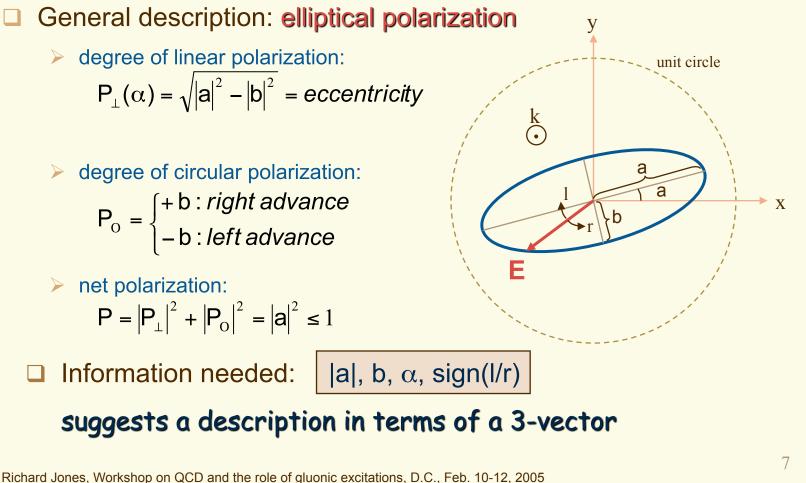




Richard Jones, Workshop on QCD and the role of gluonic excitations, D.C., Feb. 10-12, 2005

6

What general expressions can describe these states?



What general expressions can describe these states?

General description: Stokes parameterization

✓ Define
$$p_x = p sin(\theta) cos(2\alpha)$$

 $p_y = p sin(\theta) sin(2\alpha)$
 $p_z = p cos(\theta)$

where $sin(\theta) = eccentricity$

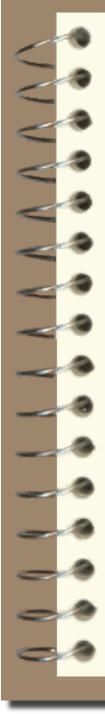
- ✓ Note that $\alpha \rightarrow \alpha + \pi$ is an identity operation on the state.
- ✓ For k along the z-axis:
 - $\mathbf{p} = \pm \mathbf{\hat{z}}$ corresponds to \pm helicity of the photon
 - $\mathbf{p} = + \hat{\mathbf{x}}$ corresponds to linear polarization in the xz plane
 - $\mathbf{p} = -\hat{\mathbf{x}}$ corresponds to linear polarization in the yz plane
 - ightarrow **p** = ± $\hat{\mathbf{y}}$ corresponds to linear polarization along the 45° diagonals

What general expressions can describe these states?

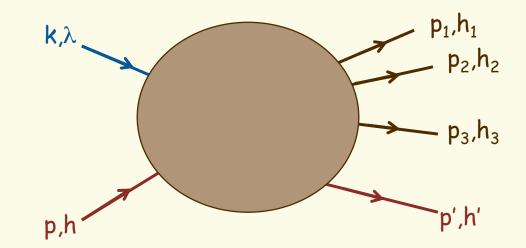
± helicity basis $|x\rangle$, $|y\rangle$ basis $\begin{pmatrix}
\cos\frac{\theta}{2}e^{i\alpha} + \sin\frac{\theta}{2}e^{-i\alpha} \\
i\cos\frac{\theta}{2}e^{i\alpha} - i\sin\frac{\theta}{2}e^{-i\alpha}
\end{pmatrix}$ $\begin{pmatrix}
\cos\frac{\theta}{2}e^{-i\alpha} \\
\sin\frac{\theta}{2}e^{i\alpha}
\end{pmatrix}$ spinor $1 + \cos \theta \sin \theta e^{-2i\alpha}$ $\frac{1+\sin\theta\cos2\alpha}{2} = -i\cos\theta + \sin\theta\sin2\alpha$ density $\frac{\sin\theta e^{2i\alpha}}{2} \frac{1-\cos\theta}{2}$ $\frac{\cos\theta + \sin\theta\sin2\alpha}{2} \qquad \frac{1 - \sin\theta\cos2\alpha}{2}$ matrix $=\frac{1}{2}(1+\mathbf{p}\cdot\boldsymbol{\sigma})$ $=\frac{1}{2}\left(1+p_{x}\sigma_{z}+p_{y}\sigma_{x}+p_{z}\sigma_{y}\right)$

Richard Jones, Workshop on QCD and the role of gluonic excitations, D.C., Feb. 10-12, 2005

9

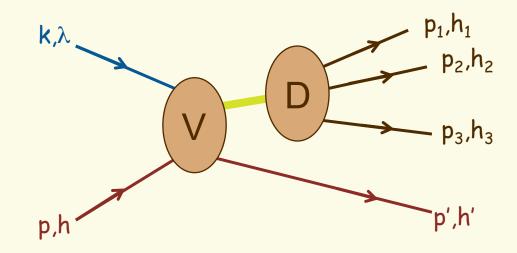


Consider some general reaction: γp→B+M



Assume somewhere the reaction can be cut in two across one line

Consider some general reaction: γp→B+M



Assume somewhere the reaction can be cut in two <u>across one line</u> $d\sigma_{\lambda} = \sum_{IM} \left| V_{\lambda,h,h'}^{J,M}(s,t) \right|^2 \left| D_{M,h_1...}^{J} \right|^2 d\Omega$

Reaction factorizes into a sum over resonances labelled by J,M
 Quite general, eg. not specific to t-channel reactions

- ❑ For simplicity, consider a single resonance X
- Let J,n_J be the <u>spin</u> and <u>naturality</u> of particle X
- Consider a partial wave J,M in which X is observed as an isolated resonance:

 $k, \epsilon \qquad \qquad J, M \qquad p, h$ $p', h' \qquad \qquad \Gamma_{h,h'}^{J,M}(\epsilon) = \sum_{\lambda,\lambda'} \left(\bigvee_{\lambda,h,h'}^{J,M} \right) \rho_{\lambda,\lambda'}(\epsilon) \left(\bigvee_{\lambda',h,h'}^{J,M} \right)^{*}$

- ❑ For simplicity, consider a single resonance X
- Let J,N be the <u>spin</u> and <u>naturality</u> of particle X

p'

□ Consider a partial wave **J**,**M** in which **X** is observed as an isolated resonance:

$$k_{,\epsilon} = J,M = p,h$$

$$\Gamma_{h,h'}^{J,M}(\epsilon) = \sum_{\lambda,\lambda'} \left(V_{\lambda,h,h'}^{J,M} \right) \rho_{\lambda,\lambda'}(\epsilon) \left(V_{\lambda',h,h'}^{J,M} \right)^{*}$$

$$= \left(\left| V_{+,h,h'}^{J,M} \right|^{2} + \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + p_{z} \left(\left| V_{+,h,h'}^{J,M} \right|^{2} - \left| V_{-,h,h'}^{J,M} \right|^{2} \right)$$

$$+ 2p_{x} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) - 2p_{y} \Im \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right)$$

Richard Jones, Workshop on QCD and the role of gluonic excitations, D.C., Feb. 10-12, 2005

13

- ❑ For simplicity, consider a single resonance X
- Let J,N be the <u>spin</u> and <u>naturality</u> of particle X
- □ Consider a partial wave **J,M** in which **X** is observed as an isolated resonance:

$$k_{,\epsilon} = J,M = p,h$$

$$\Gamma_{h,h'}^{J,M}(\epsilon) = \sum_{\lambda,\lambda'} \left(\left(V_{\lambda,h,h'}^{J,M} \right) \rho_{\lambda,\lambda'}(\epsilon) \left(\left(V_{\lambda',h,h'}^{J,M} \right)^{*} \right)$$

$$= \left(\left| \left(V_{+,h,h'}^{J,M} \right|^{2} + \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + p_{z} \left(\left| V_{+,h,h'}^{J,M} \right|^{2} - \left| V_{-,h,h'}^{J,M} \right|^{2} \right)$$

$$+ 2p_{x} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) - 2p_{y} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right)$$

Richard Jones, Workshop on QCD and the role of gluonic excitations, D.C., Feb. 10-12, 2005

14

- ❑ For simplicity, consider a single resonance X
- Let J,N be the <u>spin</u> and <u>naturality</u> of particle X

p

□ Consider a partial wave **J,M** in which **X** is observed as an isolated resonance:

$$k, \epsilon \qquad \qquad J, M \qquad \qquad p, h$$

$$\Gamma_{h,h'}^{J,M}(\epsilon) = \sum_{\lambda,\lambda'} \left(V_{\lambda,h,h'}^{J,M} \right) \rho_{\lambda,\lambda'}(\epsilon) \left(V_{\lambda',h,h'}^{J,M} \right)^{*}$$

• unpolarized • circular piece $= \left(\left| V_{+,h,h'}^{J,M} \right|^{2} + \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + p_{z} \left(\left| V_{+,h,h'}^{J,M} \right|^{2} - \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + 2p_{x} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) - 2p_{y} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right)$

- ❑ For simplicity, consider a single resonance X
- Let J,n_J be the <u>spin</u> and <u>naturality</u> of particle X
- Consider a partial wave **J**,**M** in which **X** is observed as an isolated resonance:

k,
$$\epsilon$$
 J, M p, h
, h' $\Gamma_{h,h'}^{J,M}(\epsilon) = \sum_{\lambda,\lambda'} \left(V_{\lambda,h,h'}^{J,M} \right) \rho_{\lambda,\lambda'}(\epsilon) \left(V_{\lambda',h,h'}^{J,M} \right)^*$

unpolarized

p

- circular piece
- linear pieces

$$= \left(\left| V_{+,h,h'}^{J,M} \right|^{2} + \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + p_{z} \left(\left| V_{+,h,h'}^{J,M} \right|^{2} - \left| V_{-,h,h'}^{J,M} \right|^{2} \right) + 2p_{x} \Re \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) - 2p_{y} \Im \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) + 2p_{y} \Im \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right) + 2p_{y} \Im \left(V_{+,h,h'}^{J,M} V_{-,h,h'}^{J,M} V_{-,h,h'}^{J,M} \right)$$

Summary of results from the general analysis

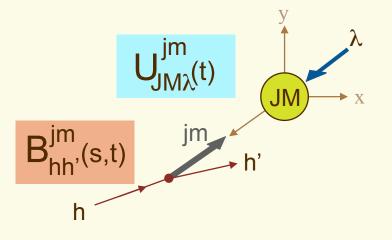
- One circular and two linear polarization observables appear.
- One unpolarized + two polarization observables are sufficient to separate the four helicity amplitudes (one phase is unobservable).
- Any 2 of the 3 polarization states would be sufficient, but having access to all three would provide useful control of systematics.

Specific results for t-channel reactions

- Break up V into a sum of allowed t-channel exchanges.
- > Exploit **parity** to eliminate some of the terms in the expansion.
- Use the two linear polarization observables to construct a filter that gives <u>two very different views of the same final states</u>.
- > Analogous to a **polaroid filter**.

sum over exchanges (jm)

$$V^{J,M}_{\lambda,h,h'}\,=\,\sum_{jm}B^{j,m}_{h,h'}\,U^{j,m}_{J,M,\lambda}$$

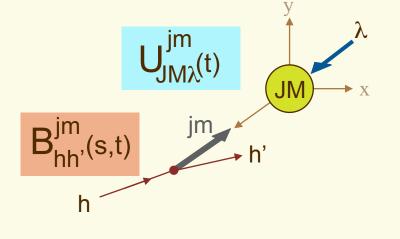


sum over exchanges (jm)

$$V^{J,M}_{\lambda,h,h'} \,=\, \sum_{jm} B^{j,m}_{h,h'}\, U^{j,m}_{J,M,\lambda}$$

• superimpose ±m states

$$\begin{split} B^{j,m,\pm}_{h,h'} &= B^{j,m}_{h,h'} \pm n_j (-1)^m B^{j,-m}_{h,h'} \\ U^{j,m}_{J,M,\pm} &= U^{j,m}_{J,M,\lambda} \pm (-1)^\lambda U^{j,m}_{J,M,-\lambda} \end{split}$$



sum over exchanges (jm)

 $V^{J,M}_{\lambda,h,h'}\,=\,\sum_{jm}B^{j,m}_{h,h'}\,U^{j,m}_{J,M,\lambda}$

• superimpose ±m states

$$\begin{split} B^{j,m,\pm}_{h,h'} &= B^{j,m}_{h,h'} \pm n_j (-1)^m B^{j,-m}_{h,h'} \\ U^{j,m}_{J,M,\pm} &= U^{j,m}_{J,M,\lambda} \pm (-1)^\lambda U^{j,m}_{J,M,-\lambda} \end{split}$$

 $U_{JM\lambda}^{jm}(t)$ $JM \rightarrow x$ $B_{hh'}^{jm}(s,t)$ $for m=0, only \pm = n_i survives$

sum over exchanges (jm)

$$V^{J,M}_{\lambda,h,h'} = \sum_{jm} B^{J}_{h,h'} U^{J}_{J,M,\lambda}$$

superimpose ±m states

$$B_{h,h'}^{j,m,\pm} = B_{h,h'}^{j,m} \pm n_j (-1)^m B_{h,h'}^{j,-m}$$
$$U_{J,M,\pm}^{j,m} = U_{J,M,\lambda}^{j,m} \pm (-1)^{\lambda} U_{J,M,-\lambda}^{j,m}$$

B^{jm}_{hh},(s,t) jm h

for m=0, only $\pm = n_i$ survives

 $\begin{array}{ll} \bullet & \text{redefine exchange expansion in basis of good parity} \\ V_{\epsilon,h,h'}^{J,M,\pm} = V_{\epsilon,h,h'}^{J,M} \pm n_J (-1)^M V_{\epsilon,h,h'}^{J,-M} & \textit{where } V_{\epsilon,h,h'}^{J,M} = \sum_{im} B_{h,h'}^{j,m} U_{J,M,\epsilon}^{j,m} \end{array}$

sum over exchanges (jm)

$$V^{J,M}_{\lambda,h,h'}\,=\,\sum_{jm}B^{j,m}_{h,h'}\,U^{j,m}_{J,M,\lambda}$$

superimpose ±m states

$$\begin{split} B_{h,h'}^{j,m,\pm} &= B_{h,h'}^{j,m} \pm n_{j} (-1)^{m} B_{h,h'}^{j,-m} \\ U_{J,M,\pm}^{j,m} &= U_{J,M,\lambda}^{j,m} \pm (-1)^{\lambda} U_{J,M,-\lambda}^{j,m} \end{split}$$

 $B_{hh'}^{jm}(s,t) \qquad jm \\ h'$ h' hfor m=0, only ± = n_i survives

$$\begin{split} \text{redefine exchange expansion in basis of good parity} \\ V_{\epsilon,h,h'}^{J,M,\pm} &= V_{\epsilon,h,h'}^{J,M} \pm n_{J}(-1)^{M}V_{\epsilon,h,h'}^{J,-M} \qquad \textit{where } V_{\epsilon,h,h'}^{J,M} = \sum_{jm} B_{h,h'}^{j,m} U_{J,M,\epsilon}^{j,m} \\ &= \sum_{jm} B_{h,h',\pm\epsilon}^{j,m} U_{J,M,\epsilon}^{j,m} \qquad \text{photon polarization } (x: \epsilon=-1, y: \epsilon=+1) \\ \text{naturality of exchanged object } n_{j} \end{split}$$

In the amplitude leading to a final state of spin J, |M| and parity r, only exchanges of naturality +r [-r] can couple to y-polarized [x-polarized] light.

caveat

- Selection of exchanges according to naturality is only exact in the high-energy limit (leading order in 1/s).
- For m≠0 partial waves there may be non-negligible violations at GlueX energies.

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(\bigvee_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(\bigvee_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(\bigvee_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(\bigvee_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^*$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(V_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(V_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\sum_{h,h'}^{J,|M|,\pm} = \sum_{j,j',m,m'} \left[\frac{1-p_{x}}{2} \right] B_{h,h'}^{j,m,\pm} \left(B_{h,h'}^{j',m',\pm} \right)^{*} U_{J,M,+}^{j,m} \left(U_{J,M,+}^{j',m'} \right)^{*} \qquad y \text{ polarization}$$

$$+ \left[\frac{1+p_{x}}{2} \right] B_{h,h'}^{j,m,\mp} \left(B_{h,h'}^{j',m',\mp} \right)^{*} U_{J,M,-}^{j,m} \left(U_{J,M,-}^{j',m'} \right)^{*}$$

$$+ \frac{p_{y}}{2} \Re \left\{ B_{h,h'}^{j,m,\pm} \left(B_{h,h'}^{j',m',\mp} \right)^{*} U_{J,M,+}^{j,m} \left(U_{J,M,-}^{j',m'} \right)^{*} \right\}$$

$$- \frac{p_{z}}{2} \Im \left\{ B_{h,h'}^{j,m,\pm} \left(B_{h,h'}^{j',m',\mp} \right)^{*} U_{J,M,+}^{j,m} \left(U_{J,M,-}^{j',m'} \right)^{*} \right\}$$

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(\bigvee_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(\bigvee_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\begin{split} \Gamma_{h,h'}^{J,|M|,\pm} &= \sum_{j,j',m,m'} \left[\frac{1-p_x}{2} \right] \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\pm} \right)^* \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,\pm}^{j',m'} \right)^* \qquad \textbf{y polarization} \\ &+ \left[\frac{1+p_x}{2} \right] \mathsf{B}_{h,h'}^{j,m,\mp} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^* \mathsf{U}_{J,M,-}^{j,m'} \left(\mathsf{U}_{J,M,-}^{j',m'} \right)^* \qquad \textbf{x polarization} \\ &+ \frac{p_y}{2} \Re \left\{ \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^* \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,-}^{j',m'} \right)^* \right\} \\ &- \frac{p_z}{2} \Im \left\{ \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^* \mathsf{U}_{J,M,+}^{j,m} \left(\mathsf{U}_{J,M,-}^{j',m'} \right)^* \right\} \end{split}$$

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(V_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(V_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(V_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(V_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

$$\begin{split} \Gamma_{h,h'}^{J,|M|,\pm} &= \sum_{j,j',m,m'} \left[\frac{1-p_{x}}{2} \right] \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\pm} \right)^{*} \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,\pm}^{j',m'} \right)^{*} & \qquad \texttt{y polarization} \\ &+ \left[\frac{1+p_{x}}{2} \right] \mathsf{B}_{h,h'}^{j,m,\mp} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^{*} \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,\pm}^{j',m'} \right)^{*} & \qquad \texttt{x polarization} \\ &+ \left[\frac{p_{y}}{2} \Re \left\{ \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^{*} \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,\pm}^{j',m'} \right)^{*} \right\} & \qquad \texttt{\pm 45^{\circ} polarization} \\ &- \left[\frac{p_{z}}{2} \Im \left\{ \mathsf{B}_{h,h'}^{j,m,\pm} \left(\mathsf{B}_{h,h'}^{j',m',\mp} \right)^{*} \mathsf{U}_{J,M,\pm}^{j,m} \left(\mathsf{U}_{J,M,\pm}^{j',m'} \right)^{*} \right\} & \qquad \texttt{circular polarization} \end{split}$$

\Box unpolarized nucleons \Rightarrow mixed exchange terms vanish

$$\Gamma_{h,h'}^{J,|\mathsf{M}|,\pm} = \sum_{\epsilon\epsilon'} \left(V_{\epsilon,h,h'}^{J,\mathsf{M},\pm} \right) \rho_{\epsilon\epsilon'} \left(V_{\epsilon',h,h'}^{J,\mathsf{M},\pm} \right)^{*}$$

Γ

density matrix is now needed in the $|x\rangle$, $|y\rangle$ basis

 \Box unpolarized nucleons \Rightarrow mixed exchange terms vanish

What additional information is available with circular polarization?

Does this mean that circular polarization is useless without a polarized target?

NO

- What circular polarization cannot do (alone):
 - > affect the total yields of anything
 - \succ any dependence of the differential cross section on α
 - produce interference between exchanges of opposite parity
 - reveal any unique information that is otherwise unobservable
- What circular polarization can do:
 - generate interferences between final states of ±M
 - together with either p_x or p_y can provide the same information as having both p_x and p_y (2 out of 3 rule)
 - > provide a useful consistency check, control over systematics

How (well) can we measure the polarization state?

Linear polarization measurement – method 1

- * measure distribution of (ϕ_{GJ} - α) in ρ_0 photoproduction
- dominated by natural exchange (eg. Pomeron), spin non-flip
- distribution ~ $sin^2(\theta_{GJ}) [p_x cos(2\varphi_{GJ}) + p_y sin(2\varphi_{GJ})]$
- non-leading contribution (spin-flip) is governed by small parameter (t/s)^½ expect 10% corrections at GlueX energies
- large cross section, clean experimental signature make this method ideal for continuously monitoring p
- An absolute method is needed, <u>independent of assumptions</u> <u>of high-energy asymptotics</u>, to calibrate this one.

How (well) can we measure the polarization state?

Linear polarization measurement – method 2

- uses the well-understood QED process of pair-production
- ✤ analyzing power ~30%, calculated to percent accuracy
- GlueX pair spectrometer also provides a continuous monitor of the collimated beam intensity spectrum
- thin O(10⁻⁴ rad.len.) pair target upstream of GlueX is compatible with continuous parallel operation

Linear polarization measurement – method 3

- calculated from the measured intensity spectrum
- to be reliable, must fit both precollimated (tagger) and collimated (pair spectrometer) spectra.

How (well) can we measure the polarization state?

Circular polarization measurement – method 1

- calculated from the known electron beam polarization
- well-understood in terms of QED (no complications from atomic form factors, crystal imperfections, etc.)
- relies on a polarimetry measurement in another hall, reliable beam transport calculations from COSA
- can be used to calibrate a benchmark hadronic reaction
- once calibrated, the GlueX detector measures its own p_z
- Circular polarization measurement method 2
 - put a thin magnetized iron foil into the pair spectrometer target ladder, measure p_z using pair-production asymmetry

In what situations might target polarization be useful?

More experimental control over exchange terms

- Unpolarized nucleon SDM ⇒ cross section is an incoherent sum of positive and negative parity contributions.
- Polarization at the nucleon vertex gives rise to new terms that contain interferences between + and – parity that change sign under target polarization reversal.

But

- The new terms represent an additional complication to the partial wave analysis.
- A real simplification does not occur unless both the target and recoil spins are polarized / measured.
- Spin structure of the baryon couplings is not really the point.

Can we make a beam with helicity $|\lambda| \ge 2$?

✓ **Example:** how to construct a state with m=2, $<k> = k\hat{z}^{\flat}$

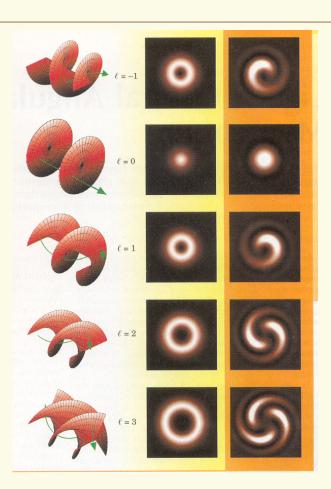
- 1. start with a E2 photon in the m=2 substate
- 2. superimpose a E3 photon in m=2 with amplitude 1
- 3. superimpose a E4 photon with m=2 with amplitude 1
- 4. continue indefinitely

Result:

- 1. a one-photon state with m=2
- 2. not an eigenstate of momentum k, but a state that is arbitrarily well collimated along the z axis

Can we make a beam with helicity $|\lambda| \geq 2$?

- Padgett, Cordial, Alen, *Physics Today* (May 2004) 35. Light's Orbital Angular Momentum
 - + a new way to think about light
 - + can be produced in a crystal
- > How might gammas of this kind be produced?
 - ✤ from a crystal
 - ✤ using laser back-scatter
- Problems
 - + transverse size
 - + phase coherence



Summary and conclusions:

- Simultaneous linear and circular polarization is **possible** and **useful** for resolving the spin structure of the production amplitude.
- Linear polarization is of unique interest in t-channel reactions for isolating exchanges of a given naturality to a given final state.
- Circular polarization can be used by observing changes in angular distributions (not yields) with the flip of the beam polarization.
- Target polarization introduces interference between terms of opposite parity, but these terms are non-leading in 1/s.
- The restriction of exchange amplitudes of a given parity to particles of a given naturality a leading-order in 1/s argument – not exact.